Sharp Monocular View Synthesis in Less Than a Second
AuthorsLars Mescheder, Wei Dong, Shiwei Li, Xuyang Bai, Marcel Santos, Peiyun Hu, Bruno Lecouat, Mingmin Zhen, Amaël Delaunoy, Tian Fang, Yanghai Tsin, Stephan R. Richter, Vladlen Koltun
Sharp Monocular View Synthesis in Less Than a Second
AuthorsLars Mescheder, Wei Dong, Shiwei Li, Xuyang Bai, Marcel Santos, Peiyun Hu, Bruno Lecouat, Mingmin Zhen, Amaël Delaunoy, Tian Fang, Yanghai Tsin, Stephan R. Richter, Vladlen Koltun
We present SHARP, an approach to photorealistic view synthesis from a single image. Given a single photograph, SHARP regresses the parameters of a 3D Gaussian representation of the depicted scene. This is done in less than a second on a standard GPU via a single feedforward pass through a neural network. The 3D Gaussian representation produced by SHARP can then be rendered in real time, yielding high-resolution photorealistic images for nearby views. The representation is metric, with absolute scale, supporting metric camera movements. Experimental results demonstrate that SHARP delivers robust zero-shot generalization across datasets. It sets a new state of the art on multiple datasets, reducing LPIPS by 25-34% and DISTS by 21-43% versus the best prior model, while lowering the synthesis time by three orders of magnitude.
HUGS: Human Gaussian Splats
December 7, 2023research area Computer Vision
Recent advances in neural rendering have improved both training and rendering times by orders of magnitude. While these methods demonstrate state-of-the-art quality and speed, they are designed for photogrammetry of static scenes and do not generalize well to freely moving humans in the environment. In this work, we introduce Human Gaussian Splats (HUGS) that represents an animatable human together with the scene using 3D Gaussian Splatting…
Fast and Explicit Neural View Synthesis
February 2, 2022research area Computer Vision, research area Methods and Algorithmsconference WACV
We study the problem of novel view synthesis from sparse source observations of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. Our approach explicitly encodes observations into a volumetric representation that enables amortized rendering. We demonstrate that although continuous radiance field representations have gained a lot of…