Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding
AuthorsMohanakrishnan Hariharan
Semantic Mastery: Enhancing LLMs with Advanced Natural Language Understanding
AuthorsMohanakrishnan Hariharan
Large language models (LLMs) have greatly improved their capability in performing NLP tasks. However, deeper semantic understanding, contextual coherence, and more subtle reasoning are still difficult to obtain. The paper discusses state-of-the-art methodologies that advance LLMs with more advanced NLU techniques, such as semantic parsing, knowledge integration, and contextual reinforcement learning. We analyze the use of structured knowledge graphs, retrieval-augmented generation (RAG), and fine-tuning strategies that match models with human-level understanding. Furthermore, we address the incorporation of transformer-based architectures, contrastive learning, and hybrid symbolic-neural methods that address problems like hallucinations, ambiguity, and inconsistency in the factual perspectives involved in performing complex NLP tasks, such as question-answering text summarization and dialogue generation. Our findings show the importance of semantic precision for enhancing AI-driven language systems and suggest future research directions to bridge the gap between statistical language models and true natural language understanding.
A Generative Model for Joint Natural Language Understanding and Generation
June 15, 2020research area Speech and Natural Language Processingconference ACL
Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which…
Reverse Transfer Learning: Can Word Embeddings Trained for Different NLP Tasks Improve Neural Language Models?
September 9, 2019research area Speech and Natural Language Processingconference Interspeech
Natural language processing (NLP) tasks tend to suffer from a paucity of suitably annotated training data, hence the recent success of transfer learning across a wide variety of them. The typical recipe involves: (i) training a deep, possibly bidirectional, neural network with an objective related to language modeling, for which training data is plentiful; and (ii) using the trained network to derive contextual representations that are far richer…