View publication

In this work, we present and evaluate SELMA, a Speech-Enabled Language Model for virtual Assistant interactions that integrates audio and text as inputs to a Large Language Model (LLM). SELMA is designed to handle three primary and two auxiliary tasks related to interactions with virtual assistants simultaneously within a single end-to-end model. We employ low-rank adaptation modules for parameter-efficient training of both the audio encoder and the LLM. Additionally, we implement a feature pooling strategy enabling the system to recognize global patterns and improve accuracy on tasks less reliant on individual sequence elements. Experimental results on Voice Trigger (VT) detection, Device-Directed Speech Detection (DDSD), and Automatic Speech Recognition (ASR), demonstrate that our approach both simplifies the typical input processing pipeline of virtual assistants significantly and also improves performance compared to dedicated models for each individual task. SELMA yields relative Equal-Error Rate improvements of 64% on the VT detection task, and 22% on DDSD, while also achieving word error rates close to the baseline.

Related readings and updates.

Virtual assistants are becoming increasingly important speech-driven Information Retrieval platforms that assist users with various tasks. We discuss open problems and challenges with respect to modeling spoken information queries for virtual assistants, and list opportunities where Information Retrieval methods and research can be applied to improve the quality of virtual assistant speech recognition. We discuss how query domain classification,...

Read more

We focus on improving the effectiveness of a Virtual Assistant (VA) in recognizing emerging entities in spoken queries. We introduce a method that uses historical user interactions to forecast which entities will gain in popularity and become trending, and it subsequently integrates the predictions within the Automated Speech Recognition (ASR) component of the VA. Experiments show that our proposed approach results in a 20% relative reduction in...

Read more