View publication

*=Equal Contribution

Despite the success of a number of recent techniques for visual self-supervised deep learning, there remains limited investigation into the representations that are ultimately learned. By using recent advances in comparing neural representations, we explore in this direction by comparing a constrastive self-supervised algorithm (SimCLR) to supervision for simple image data in a common architecture. We find that the methods learn similar intermediate representations through dissimilar means, and that the representations diverge rapidly in the final few layers. We investigate this divergence, finding that it is caused by these layers strongly fitting to the distinct learning objectives. We also find that SimCLR's objective implicitly fits the supervised objective in intermediate layers, but that the reverse is not true. Our work particularly highlights the importance of the learned intermediate representations, and raises important questions for auxiliary task design.

Related readings and updates.

Self-Supervised Object Goal Navigation with In-Situ Finetuning

A household robot should be able to navigate to target locations without requiring users to first annotate everything in their home. Current approaches to this object navigation challenge do not test on real robots and rely on expensive semantically labeled 3D meshes. In this work, our aim is an agent that builds self-supervised models of the world via exploration, the same as a child might. We propose an end-to-end self-supervised embodied agent…
See paper details

Homomorphic Self-Supervised Learning

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Many state of the art self-supervised learning approaches fundamentally rely on transformations applied to the input in order to selectively extract task-relevant information. Recently, the field of equivariant deep learning has developed to introduce structure into the feature space of deep neural networks, specifically with respect to such…
See paper details