View publication

*=Equal Contribution

Despite the success of a number of recent techniques for visual self-supervised deep learning, there remains limited investigation into the representations that are ultimately learned. By using recent advances in comparing neural representations, we explore in this direction by comparing a constrastive self-supervised algorithm (SimCLR) to supervision for simple image data in a common architecture. We find that the methods learn similar intermediate representations through dissimilar means, and that the representations diverge rapidly in the final few layers. We investigate this divergence, finding that it is caused by these layers strongly fitting to the distinct learning objectives. We also find that SimCLR's objective implicitly fits the supervised objective in intermediate layers, but that the reverse is not true. Our work particularly highlights the importance of the learned intermediate representations, and raises important questions for auxiliary task design.

Related readings and updates.

Homomorphic Self-Supervised Learning

This paper was accepted at the workshop "Self-Supervised Learning - Theory and Practice" at NeurIPS 2022. Many state of the art self-supervised learning approaches fundamentally rely on transformations applied to the input in order to selectively extract task-relevant information. Recently, the field of equivariant deep learning has developed to introduce structure into the feature space of deep neural networks, specifically with respect to such…
See paper details

Reachability Embeddings: Self-Supervised Representation Learning from Spatiotemporal Motion Trajectories for Multimodal Geospatial Computer Vision

Self-supervised representation learning techniques utilize large datasets without semantic annotations to learn meaningful, universal features that can be conveniently transferred to solve a wide variety of downstream supervised tasks. In this paper, we propose a self-supervised method for learning representations of geographic locations from unlabeled GPS trajectories to solve downstream geospatial computer vision tasks. Tiles resulting from a…
See paper details