View publication

Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work, we present an efficient and effective collision avoidance system that combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn effective search heuristics that speed up the search for collision-free trajectory and reduce the frequency of triggering automatic emergency interventions. This novel setup enables RL to learn safely and directly on mobile robots in a real-world indoor environment, minimizing actual crashes even during training. Our real-world experiments show that, when compared with several baselines, our approach enjoys a higher average speed, lower crash rate, higher goals reached rate, smaller computation overhead, and smoother overall control.

Related readings and updates.

ARtonomous: Introducing Middle School Students to Reinforcement Learning Through Virtual Robotics

Typical educational robotics approaches rely on imperative programming for robot navigation. However, with the increasing presence of AI in everyday life, these approaches miss an opportunity to introduce machine learning (ML) techniques grounded in an authentic and engaging learning context. Furthermore, the needs for costly specialized equipment and ample physical space are barriers that limit access to robotics experiences for all learners. We…
See paper details

Learning Conditional Error Model for Simulated Time-Series Data

Applications such as autonomous navigation [1], human-robot interaction [2], game-playing robots [8], etc., use simulation to minimize the cost of testing in real world. Furthermore, some machine learning algorithms, like reinforcement learning, use simulation for training a model. To test reliably in simulation or deploy a model in the real world that is trained with simulated data, the simulator should be representative of the real environment…
See paper details