View publication

Sampling from a high-dimensional distribution is a fundamental task in statistics, engineering, and the sciences. A canonical approach is the Langevin Algorithm, i.e., the Markov chain for the discretized Langevin Diffusion. This is the sampling analog of Gradient Descent. Despite being studied for several decades in multiple communities, tight mixing bounds for this algorithm remain unresolved even in the seemingly simple setting of log-concave distributions over a bounded domain. This paper completely characterizes the mixing time of the Langevin Algorithm to its stationary distribution in this setting (and others). This mixing result can be combined with any bound on the discretization bias in order to sample from the stationary distribution of the continuous Langevin Diffusion. In this way, we disentangle the study of the mixing and bias of the Langevin Algorithm. Our key insight is to introduce a technique from the differential privacy literature to the sampling literature. This technique, called Privacy Amplification by Iteration, uses as a potential a variant of Rényi divergence that is made geometrically aware via Optimal Transport smoothing. This gives a short, simple proof of optimal mixing bounds and has several additional appealing properties. First, our approach removes all unnecessary assumptions required by other sampling analyses. Second, our approach unifies many settings: it extends unchanged if the Langevin Algorithm uses projections, stochastic mini-batch gradients, or strongly convex potentials (whereby our mixing time improves exponentially). Third, our approach exploits convexity only through the contractivity of a gradient step -- reminiscent of how convexity is used in textbook proofs of Gradient Descent. In this way, we offer a new approach towards further unifying the analyses of optimization and sampling algorithms.

Related readings and updates.

Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC

Various differentially private algorithms instantiate the exponential mechanism, and require sampling from the distribution exp(−f) for a suitable function f. When the domain of the distribution is high-dimensional, this sampling can be computationally challenging. Using heuristic sampling schemes such as Gibbs sampling does not necessarily lead to provable privacy. When f is convex, techniques from log-concave sampling lead to polynomial-time…
See paper details

NeurIPS 2020

Apple sponsored the Neural Information Processing Systems (NeurIPS) conference, which was held virtually from December 6 to 12. NeurIPS is a global conference focused on fostering the exchange of research on neural information processing systems in their biological, technological, mathematical, and theoretical aspects.

See event details