View publication

This paper introduces a framework that integrates reinforcement learning (RL) with autonomous agents to enable continuous improvement in the automated process of software test cases authoring from business requirement documents within Quality Engineering (QE) workflows. Conventional systems employing Large Language Models (LLMs) generate test cases from static knowledge bases, which fundamentally limits their capacity to enhance performance over time. Our proposed Reinforcement Infused Agentic RAG (Retrieve, Augment, Generate) framework overcomes this limitation by employing AI agents that learn from QE feedback, assessments, and defect discovery outcomes to automatically improve their test case generation strategies. The system combines specialized agents with a hybrid vector-graph knowledge base that stores and retrieves software testing knowledge. Through advanced RL algorithms, specifically Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN), these agents optimize their behavior based on QE-reported test effectiveness, defect detection rates, and workflow metrics. As QEs execute AI-generated test cases and provide feedback, the system learns from this expert guidance to improve future iterations. Experimental validation on enterprise Apple projects yielded substantive improvements: a 2.4% increase in test generation accuracy (from 94.8% to 97.2%), and a 10.8% improvement in defect detection rates. The framework establishes a continuous knowledge refinement loop driven by QE expertise, resulting in progressively superior test case quality that enhances, rather than replaces, human testing capabilities.

Related readings and updates.

We present an approach to software testing automation using Agentic Retrieval-Augmented Generation (RAG) systems for Quality Engineering (QE) artifact creation. We combine autonomous AI agents with hybrid vector-graph knowledge systems to automate test plan, case, and QE metric generation. Our approach addresses traditional software testing limitations by leveraging LLMs such as Gemini and Mistral, multi-agent orchestration, and enhanced…

Read more

Making sophisticated, robust, and safe sequential decisions is at the heart of intelligent systems. This is especially critical for planning in complex multi-agent environments, where agents need to anticipate other agents’ intentions and possible future actions. Traditional methods formulate the problem as a Markov Decision Process, but the solutions often rely on various assumptions and become brittle when presented with corner cases. In…

Read more