View publication

Conversational question answering (QA) requires the ability to correctly interpret a question in the context of previous conversation turns. We address the conversational QA task by decomposing it into question rewriting and question answering subtasks. The question rewriting (QR) subtask is specifically designed to reformulate ambiguous questions, which depend on the conversational context, into unambiguous questions that can be correctly interpreted outside of the conversational context. We introduce a conversational QA architecture that sets the new state of the art on the TREC CAsT 2019 passage retrieval dataset. Moreover, we show that the same QR model improves QA performance on the QuAC dataset with respect to answer span extraction, which is the next step in QA after passage retrieval. Our evaluation results indicate that the QR model we proposed achieves near human-level performance on both datasets and the gap in performance on the end-to-end conversational QA task is attributed mostly to the errors in QA.

Related readings and updates.

Open-Domain Question Answering Goes Conversational via Question Rewriting

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 81K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual…
See paper details

A Wrong Answer or a Wrong Question? An Intricate Relationship between Question Reformulation and Answer Selection in Conversational Question Answering

The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question…
See paper details