View publication

We present an architecture for voice trigger detection for virtual assistants. The main idea in this work is to exploit information in words that immediately follow the trigger phrase. We first demonstrate that by including more audio context after a detected trigger phrase, we can indeed get a more accurate decision. However, waiting to listen to more audio each time incurs a latency increase. Progressive Voice Trigger Detection allows us to trade-off latency and accuracy by accepting clear trigger candidates quickly, but waiting for more context to decide whether to accept more marginal examples. Using a two-stage architecture, we show that by delaying the decision for just 3% of detected true triggers in the test set, we are able to obtain a relative improvement of 66% in false rejection rate, while incurring only a negligible increase in latency.

Related readings and updates.

Voice Trigger System for Siri

A growing number of consumer devices, including smart speakers, headphones, and watches, use speech as the primary means of user input. As a result, voice trigger detection systems—a mechanism that uses voice recognition technology to control access to a particular device or feature—have become an important component of the user interaction pipeline as they signal the start of an interaction between the user and a device. Since these systems are deployed entirely on-device, several considerations inform their design, like privacy, latency, accuracy, and power consumption.

See highlight details

Improving Voice Trigger Detection with Metric Learning

Voice trigger detection is an important task, which enables activating a voice assistant when a target user speaks a keyword phrase. A detector is typically trained on speech data independent of speaker information and used for the voice trigger detection task. However, such a speaker independent voice trigger detector typically suffers from performance degradation on speech from underrepresented groups, such as accented speakers. In this work…
See paper details