View publication

We study adaptive methods for differentially private convex optimization, proposing and analyzing differentially private variants of a Stochastic Gradient Descent (SGD) algorithm with adaptive stepsizes, as well as the AdaGrad algorithm. We provide upper bounds on the regret of both algorithms and show that the bounds are (worst-case) optimal. As a consequence of our development, we show that our private versions of AdaGrad outperform adaptive SGD, which in turn outperforms traditional SGD in scenarios with non-isotropic gradients where (non-private) Adagrad provably outperforms SGD. The major challenge is that the isotropic noise typically added for privacy dominates the signal in gradient geometry for high-dimensional problems; approaches to this that effectively optimize over lower-dimensional subspaces simply ignore the actual problems that varying gradient geometries introduce. In contrast, we study non-isotropic clipping and noise addition, developing a principled theoretical approach; the consequent procedures also enjoy significantly stronger empirical performance than prior approaches.

Related readings and updates.

Apple Privacy-Preserving Machine Learning Workshop 2022

Earlier this year, Apple hosted the Workshop on Privacy-Preserving Machine Learning (PPML). This virtual event brought Apple and members of the academic research communities together to discuss the state of the art in the field of privacy-preserving machine learning through a series of talks and discussions over two days.

See event details

Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses

Uniform stability is a notion of algorithmic stability that bounds the worst case change in the model output by the algorithm when a single data point in the dataset is replaced. An influential work of Hardt et al. (2016) provides strong upper bounds on the uniform stability of the stochastic gradient descent (SGD) algorithm on sufficiently smooth convex losses. These results led to important progress in understanding of the generalization…
See paper details