As the adoption of language models advances, so does the need to better represent individual users to the model. Are there aspects of an individual’s belief system that a language model can utilize for improved alignment? Following prior research, we investigate this question in the domain of opinion prediction by developing PrimeX, a dataset of public opinion survey data from 858 US residents with two additional sources of belief information: written explanations from the respondents for why they hold specific opinions, and the Primal World Belief survey for assessing respondent worldview. We provide an extensive initial analysis of our data and show the value of belief explanations and worldview for personalizing language models. Our results demonstrate how the additional belief information in PrimeX can benefit both the NLP and psychological research communities, opening up avenues for further study.

Related readings and updates.

Language models prompted with a user description or persona are being used to predict the user’s preferences and opinions. However, existing approaches to building personas mostly rely on a user’s demographic attributes and/or prior judgments, but not on any underlying reasoning behind a user’s judgments. We introduce PB&J (Psychology of Behavior and Judgments), a framework that improves LM personas by incorporating potential rationales for why…

Read more

Earlier this year, Apple hosted the Natural Language Understanding workshop. This two-day hybrid event brought together Apple and members of the academic research community for talks and discussions on the state of the art in natural language understanding.

In this post, we share highlights from workshop discussions and recordings of select workshop talks.

Read more