As the adoption of language models advances, so does the need to better represent individual users to the model. Are there aspects of an individual’s belief system that a language model can utilize for improved alignment? Following prior research, we investigate this question in the domain of opinion prediction by developing PrimeX, a dataset of public opinion survey data from 858 US residents with two additional sources of belief information: written explanations from the respondents for why they hold specific opinions, and the Primal World Belief survey for assessing respondent worldview. We provide an extensive initial analysis of our data and show the value of belief explanations and worldview for personalizing language models. Our results demonstrate how the additional belief information in PrimeX can benefit both the NLP and psychological research communities, opening up avenues for further study.

Related readings and updates.

Large Language Models (LLMs) have made substantial progress in the past several months, shattering state-of-the-art benchmarks in many domains. This paper investigates LLMs’ behavior with respect to gender stereotypes, a known stumbling block for prior models. We propose a simple paradigm to test the presence of gender bias, building on but differing from WinoBias, a commonly used gender bias dataset which is likely to be included in the training…

Read more

Earlier this year, Apple hosted the Natural Language Understanding workshop. This two-day hybrid event brought together Apple and members of the academic research community for talks and discussions on the state of the art in natural language understanding.

In this post, we share highlights from workshop discussions and recordings of select workshop talks.

Read more