View publication

Pre-trained model representations have demonstrated state-of-the-art performance in speech recognition, natural language processing, and other applications. Speech models, such as Bidirectional Encoder Representations from Transformers (BERT) and Hidden units BERT (HuBERT), have enabled generating lexical and acoustic representations to benefit speech recognition applications. We investigated the use of pre-trained model representations for estimating dimensional emotions, such as activation, valence, and dominance, from speech. We observed that while valence may rely heavily on lexical representations, activation and dominance rely mostly on acoustic information. In this work, we used multi-modal fusion representations from pre-trained models to generate state-of-the-art speech emotion estimation, and we showed a 100% and 30% relative improvement in concordance correlation coefficient (CCC) on valence estimation compared to standard acoustic and lexical baselines. Finally, we investigated the robustness of pre-trained model representations against noise and reverberation degradation and noticed that lexical and acoustic representations are impacted differently. We discovered that lexical representations are more robust to distortions compared to acoustic representations, and demonstrated that knowledge distillation from a multi-modal model helps to improve the noise-robustness of acoustic-based models

Related readings and updates.

Investigating Salient Representations and Label Variance Modeling in Dimensional Speech Emotion Analysis

Representations from models such as Bidirectional Encoder Representations from Transformers (BERT) and Hidden units BERT (HuBERT) have helped to achieve state-of-the-art performance in dimensional speech emotion recognition. Both HuBERT, and BERT models generate fairly large dimensional representations, and such models were not trained with emotion recognition task in mind. Such large dimensional representations result in speech emotion models…
See paper details

Speech Emotion: Investigating Model Representations, Multi-Task Learning and Knowledge Distillation

Estimating dimensional emotions, such as activation, valence and dominance, from acoustic speech signals has been widely explored over the past few years. While accurate estimation of activation and dominance from speech seem to be possible, the same for valence remains challenging. Previous research has shown that the use of lexical information can improve valence estimation performance. Lexical information can be obtained from pre-trained…
See paper details