View publication

We present a Positional Description Scheme (PDS) tailored for digit sequences, integrating placeholder value information for each digit. Given the structural limitations of subword tokenization algorithms, language models encounter critical Text Normalization (TN) challenges when handling numerical tasks. Our schema addresses this challenge through straightforward pre-processing, preserving the model architecture while significantly simplifying number normalization, rendering the problem tractable. This simplifies the task and facilitates more compact production-ready models capable of learning from smaller datasets. Furthermore, our investigations reveal that PDS enhances the arithmetic processing capabilities of language models, resulting in a relative accuracy improvement of 23% to 51% on complex arithmetic tasks. We demonstrate that PDS effectively mitigates fatal numerical normalization errors in neural models, requiring only a modest amount of training data without rule-based Finite State Transducers (FST). We demonstrate that PDS is essential for both the Text-To-Speech and Speech Recognition text processing, enabling effective TN under production constraints.

Related readings and updates.

Rescribe: Authoring and Automatically Editing Audio Descriptions

Audio descriptions make videos accessible to those who cannot see them by describing visual content in audio. Producing audio descriptions is challenging due to the synchronous nature of the audio description that must fit into gaps of other video content. An experienced audio description author will produce content that fits narration necessary to understand, enjoy, or experience the video content into the time available. This can be especially…
See paper details

SNDCNN: Self-Normalizing Deep CNNs With Scaled Exponential Linear Units For Speech Recognition

Very deep CNNs achieve state-of-the-art results in both computer vision and speech recognition, but are difficult to train. The most popular way to train very deep CNNs is to use shortcut connections (SC) together with batch normalization (BN). Inspired by Self-Normalizing Neural Networks, we propose the self-normalizing deep CNN (SNDCNN) based acoustic model topology, by removing the SC/BN and replacing the typical RELU activations with scaled…
See paper details