View publication

Autoregressive models for text sometimes generate repetitive and low-quality output because errors accumulate during the steps of generation. This issue is often attributed to exposure bias - the difference between how a model is trained and how it is used during inference. Denoising diffusion models provide an alternative approach in which a model can revisit and revise its output. However, they can be computationally expensive, and prior efforts on text have led to models that produce less fluent output compared to autoregressive models, especially for longer text and paragraphs. In this paper, we propose PLANNER, a model that combines latent semantic diffusion with autoregressive generation, to generate fluent text while exercising global control over paragraphs. The model achieves this by combining an autoregressive "decoding" module with a "planning" module that uses latent diffusion to generate semantic paragraph embeddings in a coarse-to-fine manner. The proposed method is evaluated on various conditional generation tasks, and results on semantic generation, text completion, and summarization show its effectiveness in generating high-quality long-form text in an efficient manner.

Related readings and updates.

Stable Diffusion with Core ML on Apple Silicon

Today, we are excited to release optimizations to Core ML for Stable Diffusion in macOS 13.1 and iOS 16.2, along with code to get started with deploying to Apple Silicon devices.

See paper details

Plan-then-Generate: Controlled Data-to-Text

Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo…
See paper details