View publication

Continuous cardiovascular monitoring can play a key role in precision health. However, some fundamental cardiac biomarkers of interest, including stroke volume and cardiac output, require invasive measurements, e.g., arterial pressure waveforms (APW). As a non-invasive alternative, photoplethysmography (PPG) measurements are routinely collected in hospital settings. Unfortunately, the prediction of key cardiac biomarkers from PPG instead of APW remains an open challenge, further complicated by the scarcity of annotated PPG measurements. As a solution, we propose a hybrid ap- proach that uses hemodynamic simulations and unlabeled clinical data to estimate cardiovascular biomarkers directly from PPG signals. Our hybrid model combines a conditional variational autoencoder trained on paired PPG-APW data with a conditional density estimator of cardiac biomarkers trained on labeled simulated APW segments. As a key result, our experiments demonstrate that the proposed approach can detect fluctuations of cardiac output and stroke volume and outperform a supervised baseline in monitoring temporal changes in these biomarkers.

Related readings and updates.

Tracking biosignals is crucial for monitoring wellness and preempting the development of severe medical conditions. Today, wearable devices can conveniently record various biosignals, creating the opportunity to monitor health status without disruption to one’s daily routine. Despite the widespread use of wearable devices and existing digital biomarkers, the absence of curated data with annotated medical labels hinders the development of new…

Read more

This paper was accepted at the workshop Deep Generative Models for Health at NeurIPS 2023.

Cardiovascular diseases (CVDs) are a major global health concern, making the longitudinal monitoring of cardiovascular biomarkers vital for early diagnosis and intervention. A core challenge is the inference of cardiac pulse parameters from pulse waves, especially when acquired from wearable sensors at peripheral body locations. Traditional machine…

Read more