View publication

Corpus Aware Training (CAT) leverages valuable corpus metadata during training by injecting corpus information into each training example, and has been found effective in the literature, commonly known as the "tagging" approach. Models trained with CAT inherently learn the quality, domain and nuance between corpora directly from data, and can easily switch to different inference behavior. To achieve the best evaluation, CAT models pre-define a group of high quality data before training starts which can be error-prone and inefficient. In this work, we propose Optimal Corpus Aware Training (OCAT), which fine-tunes a CAT pre-trained model by freezing most of the model parameters and only tuning small set of corpus-related parameters. We show that OCAT is lightweight, resilient to overfitting, and effective in boosting model accuracy. We use WMT23 English to Chinese and English to German translation tasks as our test ground and show +3.6 and +1.8 chrF improvement, respectively, over vanilla training. Furthermore, our approach is on-par or slightly better than other state-of-the-art fine-tuning techniques while being less sensitive to hyperparameter settings.

Related readings and updates.

Machine Translation (MT) enables people to connect with others and engage with content across language barriers. Grammatical gender presents a difficult challenge for these systems, as some languages require specificity for terms that can be ambiguous or neutral in other languages. For example, when translating the English word "nurse" into Spanish, one must decide whether the feminine "enfermera" or the masculine "enfermero" is appropriate....

Read more

Self supervision and natural language supervision have emerged as two exciting ways to train general purpose image encoders which excel at a variety of downstream tasks. Recent works such as M3AE [31] and SLIP [64] have suggested that these approaches can be effectively combined, but most notably their results use small (100M samples) that is commonly used for these approaches. Here we investigate whether a similar approach can be effective when...

Read more