View publication

*= Equal Contributors

Applications of large open-domain knowledge graphs (KGs) to real-world problems pose many unique challenges. In this paper, we present extensions to Saga our platform for continuous construction and serving of knowledge at scale. In particular, we describe a pipeline for training knowledge graph embeddings that powers key capabilities such as fact ranking, fact verification, a related entities service, and support for entity linking. We then describe how our platform, including graph embeddings, can be leveraged to create a Semantic Annotation service that links unstructured Web documents to entities in our KG. Semantic annotation of the Web effectively expands our knowledge graph with edges to open-domain Web content which can be used in various search and ranking problems. Finally, we leverage annotated Web documents to drive Open-domain Knowledge Extraction. This targeted extraction framework identifies important coverage issues in the KG, then finds relevant data sources for target entities on the Web and extracts missing information to enrich the KG.

Related readings and updates.

Improving Human Annotation Effectiveness for Fact Collection by Identifying the Most Relevant Answers

This paper was accepted at the Workshops on Data Science with Human in the Loop at EMNLP 2022 Identifying and integrating missing facts is a crucial task for knowledge graph completion to ensure robustness towards downstream applications such as question answering. Adding new facts to a knowledge graph in real world system often involves human verification effort, where candidate facts are verified for accuracy by human annotators. This process…
See paper details

A Platform for Continuous Construction and Serving of Knowledge At Scale

We introduce Saga, a next-generation knowledge construction and serving platform for powering knowledge-based applications at industrial scale. Saga follows a hybrid batch-incremental design to continuously integrate billions of facts about real-world entities and construct a central knowledge graph that supports multiple production use cases with diverse requirements around data freshness, accuracy, and availability. In this paper, we discuss…
See paper details