We investigate the benefit of combining blind audio recordings with 3D scene information for novel-view acoustic synthesis. Given audio recordings from 2-4 microphones and the 3D geometry and material of a scene containing multiple unknown sound sources, we estimate the sound anywhere in the scene. We identify the main challenges of novel-view acoustic synthesis as sound source localization, separation, and dereverberation. While naively training an end-to-end network fails to produce high-quality results, we show that incorporating room impulse responses (RIRs) derived from 3D reconstructed rooms enables the same network to jointly tackle these tasks. Our method outperforms existing methods designed for the individual tasks, demonstrating its effectiveness at utilizing 3D visual information. In a simulated study on the Matterport3D-NVAS dataset, our model achieves near-perfect accuracy on source localization, a PSNR of 26.44dB and a SDR of 14.23dB for source separation and dereverberation, resulting in a PSNR of 25.55 dB and a SDR of 14.20 dB on novel-view acoustic synthesis. We release our code and model on our project website at https://github.com/apple/ml-nvas3d. Please wear headphones when listening to the results.

Related readings and updates.

Efficient-3Dim: Learning a Generalizable Single Image Novel View Synthesizer in One Day

The task of novel view synthesis aims at generating unseen perspectives of an object or scene from a limited set of input images. Nevertheless, synthesizing novel views from a single image still remains a significant challenge in the ever-evolving realm of computer vision. Previous approaches tackle this problem by adopting mesh prediction, multi-plain image construction, or more advanced techniques such as neural radiance field. Recently, a…
See paper details

Fast and Explicit Neural View Synthesis

We study the problem of novel view synthesis from sparse source observations of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. Our approach explicitly encodes observations into a volumetric representation that enables amortized rendering. We demonstrate that although continuous radiance field representations have gained a lot of…
See paper details