View publication

Voice assistants have become an essential tool for people with various disabilities because they enable complex phone- or tablet-based interactions without the need for fine-grained motor control, such as with touchscreens. However, these systems are not tuned for the unique characteristics of individuals with speech disorders, including many of those who have a motor-speech disorder, are deaf or hard of hearing, have a severe stutter, or are minimally verbal. We introduce an alternative voice-based input system which relies on sound event detection using fifteen nonverbal mouth sounds like "pop," "click," or "eh." This system was designed to work regardless of ones' speech abilities and allows full access to existing technology. In this paper, we describe the design of a dataset, model considerations for real-world deployment, and efforts towards model personalization. Our fully-supervised model achieves segment-level precision and recall of 88.6% and 88.4% on an internal dataset of 710 adults, while achieving 0.31 false positives per hour on aggressors such as speech. Five-shot personalization enables satisfactory performance in 84.5% of cases where the generic model fails.

Related readings and updates.

Analysis and Tuning of a Voice Assistant System for Dysfluent Speech

Dysfluencies and variations in speech pronunciation can severely degrade speech recognition performance, and for many individuals with moderate-to-severe speech disorders, voice operated systems do not work. Current speech recognition systems are trained primarily with data from fluent speakers and as a consequence do not generalize well to speech with dysfluencies such as sound or word repetitions, sound prolongations, or audible blocks. The…
See paper details

Deep Learning for Siri’s Voice: On-device Deep Mixture Density Networks for Hybrid Unit Selection Synthesis

Siri is a personal assistant that communicates using speech synthesis. Starting in iOS 10 and continuing with new features in iOS 11, we base Siri voices on deep learning. The resulting voices are more natural, smoother, and allow Siri’s personality to shine through. This article presents more details about the deep learning based technology behind Siri’s voice.

See article details