Photorealistic rendering and reposing of humans is important for enabling augmented reality experiences. We propose a novel framework to reconstruct the human and the scene that can be rendered with novel human poses and views from just a single in-the-wild video. Given a video captured by a moving camera, we train two NeRF models: a human NeRF model and a scene NeRF model. To train these models, we rely on existing methods to estimate the rough geometry of the human and the scene. Those rough geometry estimates allow us to create a warping field from the observation space to the canonical pose-independent space, where we train the human model in. Our method is able to learn subject specific details, including cloth wrinkles and accessories, from just a 10 second video clip, and to provide high quality renderings of the human under novel poses, from novel views, together with the background.



Novel View and Novel Pose Synthesis


Compositional Synthesis

Related readings and updates.

Fast and Explicit Neural View Synthesis

We study the problem of novel view synthesis from sparse source observations of a scene comprised of 3D objects. We propose a simple yet effective approach that is neither continuous nor implicit, challenging recent trends on view synthesis. Our approach explicitly encodes observations into a volumetric representation that enables amortized rendering. We demonstrate that although continuous radiance field representations have gained a lot of…
See paper details

Learning to Generate Radiance Fields of Indoor Scenes

People have an innate capability to understand the 3D visual world and make predictions about how the world could look from different points of view, even when relying on few visual observations. We have this spatial reasoning ability because of the rich mental models of the visual world we develop over time. These mental models can be interpreted as a prior belief over which configurations of the visual world are most likely to be observed. In this case, a prior is a probability distribution over the 3D visual world.

See article details