View publication

In this paper, we study the representation of neural networks from the view of kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel applied to neural networks. We show that NFK can be computed for both supervised and unsupervised learning models, which can serve as a unified tool for representation extraction. Furthermore, we show that practical NFKs exhibit low-rank structures. We then propose an efficient algorithm that computes a low rank approximation of NFK, which scales to large datasets and networks. We show that the low-rank approximation of NFKs derived from unsupervised generative models and supervised learning models gives rise to high-quality compact representations of data, achieving competitive results on a variety of machine learning tasks.

Related readings and updates.

Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks

This paper was accepted at the workshop on Overparameterization: Pitfalls and Opportunities at the ICML 2021 conference. Deep linear networks trained with gradient descent yield low rank solutions, as is typically studied in matrix factorization. In this paper, we take a step further and analyze implicit rank regularization in autoencoders. We show greedy learning of low-rank latent codes induced by a linear sub-network at the autoencoder…
See paper details

Adversarial Fisher Vectors for Unsupervised Representation Learning

We examine Generative Adversarial Networks (GANs) through the lens of deep Energy Based Models (EBMs), with the goal of exploiting the density model that follows from this formulation. In contrast to a traditional view where the discriminator learns a constant function when reaching convergence, here we show that it can provide useful information for downstream tasks, e.g., feature extraction for classification. To be concrete, in the EBM…
See paper details