View publication

Labeling articulated objects in unconstrained settings has a wide variety of applications including entertainment, neuroscience, psychology, ethology, and many fields of medicine. Large offline labeled datasets do not exist for all but the most common articulated object categories (e.g., humans). Hand labeling these landmarks within a video sequence is a laborious task. Learned landmark detectors can help, but can be error-prone when trained from only a few examples. Multi-camera systems that train fine-grained detectors have shown significant promise in detecting such errors, allowing for self-supervised solutions that only need a small percentage of the video sequence to be hand-labeled. The approach, however, is based on calibrated cameras and rigid geometry, making it expensive, difficult to manage, and impractical in real-world scenarios. In this paper, we address these bottlenecks by combining a non-rigid 3D neural prior with deep flow to obtain high-fidelity landmark estimates from videos with only two or three uncalibrated, handheld cameras. With just a few annotations (representing 1-2% of the frames), we are able to produce 2D results comparable to state-of-the-art fully supervised methods, along with 3D reconstructions that are impossible with other existing approaches. Our Multi-view Bootstrapping in the Wild (MBW) approach demonstrates impressive results on standard human datasets, as well as tigers, cheetahs, fish, colobus monkeys, chimpanzees, and flamingos from videos captured casually in a zoo. Along with the codebase, we release the zoo dataset, consisting of image frames and their corresponding 2D and 3D labels generated from minimal human intervention.

Related readings and updates.

Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

Deep learning has made significant impacts on multi-view stereo systems. State-of-the-art approaches typically involve building a cost volume, followed by multiple 3D convolution operations to recover the input image's pixel-wise depth. While such end-to-end learning of plane-sweeping stereo advances public benchmarks' accuracy, they are typically very slow to compute. We present MVS2D, a highly efficient multi-view stereo algorithm that…
See paper details

High Fidelity 3D Reconstructions with Limited Physical Views

Multi-view triangulation is the gold standard for 3D reconstruction from 2D correspondences, given known calibration and sufficient views. However in practice expensive multi-view setups — involving tens sometimes hundreds of cameras — are required to obtain the high fidelity 3D reconstructions necessary for modern applications. In this work we present a novel approach that leverages recent advances in 2D-3D lifting using neural shape priors…
See paper details