View publication

In this paper, we address the problem of estimating the rotational extrinsics, as well as the scale factors of two gyroscopes rigidly mounted on the same device. In particular, we formulate the problem as a least-squares minimization and introduce a direct algorithm that computes the estimated quantities without any iterations, hence avoiding local minima and improving efficiency. Furthermore, we show that the rotational extrinsics are observable while the scale factors can be determined up to global scale for general configurations of the gyroscopes. To this end, we also study special placements of the gyroscopes where a pair, or all, of their axes are parallel and analyze their impact on the scale factors’ observability. Lastly, we evaluate our algorithm in simulations and real-world experiments to assess its performance as a function of key motion and sensor characteristics.

Related readings and updates.

Double-talk Robust Multichannel Acoustic Echo Cancellation Using Least Squares MIMO Adaptive Filtering: Transversal, Array, and Lattice Forms

In this paper, we address the problem of noise-robust multiple-input multiple-output (MIMO) adaptive filtering that is optimal in least-squares sense with application to multichannel acoustic echo cancellation. We formulate the problem as minimization of a multichannel least squares cost function that incorporates near-end speech and noise statistics resulting in a novel noise-robust framework for MIMO adaptive filtering. Although the issue of…
See paper details

Robust Multichannel Linear Prediction for Online Speech Dereverberation Using Weighted Householder Least Squares Lattice Adaptive Filter

Speech dereverberation has been an important component of effective far-field voice interfaces in many applications. Algorithms based on multichannel linear prediction (MCLP) have been shown to be especially effective for blind speech dereverberation and numerous variants have been introduced in the literature. Most of these approaches can be derived from a common framework, where the MCLP problem for speech dereverberation is formulated as a…
See paper details