View publication

This paper was accepted for presentation at the International Workshop on Federated Foundation Models (FL@FM-NeurIPS'24), held in conjunction with NeurIPS 2024.

Asynchronous protocols have been shown to improve the scalability of federated learning (FL) with a massive number of clients. Meanwhile, momentum-based methods can achieve the best model quality in synchronous FL. However, naively applying momentum in asynchronous FL algorithms leads to slower convergence and degraded model performance. It is still unclear how to effective combinie these two techniques together to achieve a win-win. In this paper, we find that asynchrony introduces implicit bias to momentum updates. In order to address this problem, we propose momentum approximation that minimizes the bias by finding an optimal weighted average of all historical model updates. Momentum approximation is compatible with secure aggregation as well as differential privacy, and can be easily integrated in production FL systems with a minor communication and storage cost. We empirically demonstrate that on benchmark FL datasets, momentum approximation can achieve 1.15--4× speed up in convergence compared to existing asynchronous FL optimizers with momentum.

Related readings and updates.

pfl-research: Simulation Framework for Accelerating Research in Private Federated Learning

Federated Learning (FL) is an emerging ML training paradigm where clients own their data and collaborate to train a global model without revealing any data to the server and other participants. Researchers commonly perform experiments in a simulation environment to quickly iterate on ideas. However, existing open-source tools do not offer the efficiency required to simulate FL on larger and more realistic FL datasets. We introduce pfl-research, a…
See paper details

Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR

This paper was accepted at the Federated Learning in the Age of Foundation Models workshop at NeurIPS 2023. While automatic speech recognition (ASR) has witnessed remarkable achievements in recent years, it has not garnered a widespread focus within the federated learning (FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well suited benchmark for FL and DP as there is (i) a natural data split across users by using speaker…
See paper details