View publication

Machine learning models − now commonly developed to screen, diagnose, or predict health conditions − are evaluated with a variety of performance metrics. An important first step in assessing the practical utility of a model is to evaluate its average performance over an entire population of interest. In many settings, it is also critical that the model makes good predictions within predefined subpopulations. For instance, showing that a model is fair or equitable requires evaluating the model's performance in different demographic subgroups. However, subpopulation performance metrics are typically computed using only data from that subgroup, resulting in higher variance estimates for smaller groups. We devise a procedure to measure subpopulation performance that can be more sample-efficient than the typical subsample estimates. We propose using an evaluation model − a model that describes the conditional distribution of the predictive model score − to form model-based metric (MBM) estimates. Our procedure incorporates model checking and validation, and we propose a computationally efficient approximation of the traditional nonparametric bootstrap to form confidence intervals. We evaluate MBMs on two main tasks: a semi-synthetic setting where ground truth metrics are available and a real-world hospital readmission prediction task. We find that MBMs consistently produce more accurate and lower variance estimates of model performance for small subpopulations.

Related readings and updates.

Fair SA: Sensitivity Analysis for Fairness in Face Recognition

As the use of deep learning in high impact domains becomes ubiquitous, it is increasingly important to assess the resilience of models. One such high impact domain is that of face recognition, with real world applications involving images affected by various degradations, such as motion blur or high exposure. Moreover, images captured across different attributes, such as gender and race, can also challenge the robustness of a face recognition…
See paper details

Addressing the Loss-Metric Mismatch with Adaptive Loss Alignment

In most machine learning training paradigms a fixed, often handcrafted, loss function is assumed to be a good proxy for an underlying evaluation metric. In this work we assess this assumption by meta-learning an adaptive loss function to directly optimize the evaluation metric. We propose a sample efficient reinforcement learning approach for adapting the loss dynamically during training. We empirically show how this formulation improves…
See paper details