MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs
AuthorsErik Daxberger, Nina Wenzel*, David Griffiths*, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, Peter Grasch
MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs
AuthorsErik Daxberger, Nina Wenzel*, David Griffiths*, Haiming Gang, Justin Lazarow, Gefen Kohavi, Kai Kang, Marcin Eichner, Yinfei Yang, Afshin Dehghan, Peter Grasch
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models.
ImmerseDiffusion: A Generative Spatial Audio Latent Diffusion Model
February 12, 2025research area Human-Computer Interaction, research area Speech and Natural Language Processingconference ICASSP
We introduce ImmerseDiffusion, an end-to-end generative audio model that produces 3D immersive soundscapes conditioned on the spatial, temporal, and environmental conditions of sound objects. ImmerseDiffusion is trained to generate first-order ambisonics (FOA) audio, which is a conventional spatial audio format comprising four channels that can be rendered to multichannel spatial output. The proposed generative system is composed of a spatial…
MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices
March 10, 2023research area Computer Vision, research area Methods and Algorithmsconference CVPR
High-quality 3D ground-truth shapes are critical for 3D object reconstruction evaluation. However, it is difficult to create a replica of an object in reality, and even 3D reconstructions generated by 3D scanners have artefacts that cause biases in evaluation. To address this issue, we introduce a novel multi-view RGBD dataset captured using a mobile device, which includes highly precise 3D ground-truth annotations for 153 object models…