View publication

We describe experiments towards building a conversational digital assistant that considers the preferred conversational style of the user. In particular, these experiments are designed to measure whether users prefer and trust an assistant whose conversational style matches their own. To this end we conducted a user study where subjects interacted with a digital assistant that responded in a way that either matched their conversational style, or did not. Using self-reported personality attributes and subjects' feedback on the interactions, we built models that can reliably predict a user's preferred conversational style.

Related readings and updates.

Question Rewriting for End to End Conversational Question Answering

Conversational question answering (QA) requires the ability to correctly interpret a question in the context of previous conversation turns. We address the conversational QA task by decomposing it into question rewriting and question answering subtasks. The question rewriting (QR) subtask is specifically designed to reformulate ambiguous questions, which depend on the conversational context, into unambiguous questions that can be correctly…
See paper details

Apple at Interspeech 2019

Apple attended Interspeech 2019, the world's largest conference on the science and technology of spoken language processing. The conference took place in Graz, Austria from September 15th to 19th. See accepted papers below.

Apple continues to build cutting-edge technology in the space of machine hearing, speech recognition, natural language processing, machine translation, text-to-speech, and artificial intelligence, improving the lives of millions of customers every day.

See event details