View publication

This paper was accepted at the Workshop on Learning from Time Series for Health at NeurIPS 2022.

Decoding information from bio-signals such as EEG, using machine learning has been a challenge due to the small data-sets and difficulty to obtain labels. We propose a reconstruction-based self-supervised learning model, the masked auto-encoder for EEG (MAEEG), for learning EEG representations by learning to reconstruct the masked EEG features using a transformer architecture. We found that MAEEG can learn representations that significantly improve sleep stage classification (∼ 5% accuracy increase) when only a small number of labels are given. We also found that input sample lengths and different ways of masking during reconstruction-based SSL pretraining have a huge effect on downstream model performance. Specifically, learning to reconstruct a larger proportion and more concentrated masked signal results in better performance on sleep classifica- tion. Our findings provide insight into how reconstruction-based SSL could help representation learning for EEG.

Related readings and updates.

Subject-Aware Contrastive Learning for Biosignals

Datasets for biosignals, such as electroencephalogram (EEG) and electrocardiogram (ECG), often have noisy labels and have limited number of subjects (<100). To handle these challenges, we propose a self-supervised approach based on contrastive learning to model biosignals with a reduced reliance on labeled data and with fewer subjects. In this regime of limited labels and subjects, intersubject variability negatively impacts model…
See paper details

Optimizing Siri on HomePod in Far‑Field Settings

The typical audio environment for HomePod has many challenges — echo, reverberation, and noise. Unlike Siri on iPhone, which operates close to the user’s mouth, Siri on HomePod must work well in a far-field setting. Users want to invoke Siri from many locations, like the couch or the kitchen, without regard to where HomePod sits. A complete online system, which addresses all of the environmental issues that HomePod can experience, requires a tight integration of various multichannel signal processing technologies. Accordingly, the Audio Software Engineering and Siri Speech teams built a system that integrates both supervised deep learning models and unsupervised online learning algorithms and that leverages multiple microphone signals. The system selects the optimal audio stream for the speech recognizer by using top-down knowledge from the “Hey Siri” trigger phrase detectors. In this article, we discuss the machine learning techniques we use for online signal processing, as well as the challenges we faced and our solutions for achieving environmental and algorithmic robustness while ensuring energy efficiency.

See article details