View publication

Single-cell genomics technologies enable multimodal profiling of millions of cells across temporal and spatial dimensions. Experimental limitations prevent the measurement of all-encompassing cellular states in their native temporal dynamics or spatial tissue niche. Optimal transport theory has emerged as a powerful tool to overcome such constraints, enabling the recovery of the original cellular context. However, most algorithmic implementations currently available have not kept up the pace with increasing dataset complexity, so that current methods are unable to incorporate multimodal information or scale to single-cell atlases. Here, we introduce multi-omics single-cell optimal transport (moscot), a general and scalable framework for optimal transport applications in single-cell genomics, supporting multimodality across all applications. We demonstrate moscot's ability to efficiently reconstruct developmental trajectories of 1.7 million cells of mouse embryos across 20 time points and identify driver genes for first heart field formation. The moscot formulation can be used to transport cells across spatial dimensions as well: To demonstrate this, we enrich spatial transcriptomics datasets by mapping multimodal information from single-cell profiles in a mouse liver sample, and align multiple coronal sections of the mouse brain. We then present moscot.spatiotemporal, a new approach that leverages gene expression across spatial and temporal dimensions to uncover the spatiotemporal dynamics of mouse embryogenesis. Finally, we disentangle lineage relationships in a novel murine, time-resolved pancreas development dataset using paired measurements of gene expression and chromatin accessibility, finding evidence for a shared ancestry between delta and epsilon cells. Moscot is available as an easy-to-use, open-source python package with extensive documentation here.

Helmholtz Munich
Technical University of Munich (TUM)
§ ETH Zurich
Hebrew University of Jerusalem
†† Google Research
‡‡ Work done while at Apple

Related readings and updates.

GENOT: Entropic (Gromov) Wasserstein Flow Matching with Applications to Single-Cell Genomics

Single-cell genomics has significantly advanced our understanding of cellular behavior, catalyzing innovations in treatments and precision medicine. However, single-cell sequencing technologies are inherently destructive and can only measure a limited array of data modalities simultaneously. This limitation underscores the need for new methods capable of realigning cells. Optimal transport (OT) has emerged as a potent solution, but traditional…
See paper details

Supervised Training of Conditional Monge Maps

Optimal transport (OT) theory describes general principles to define and select, among many possible choices, the most efficient way to map a probability measure onto another. That theory has been mostly used to estimate, given a pair of source and target probability measures (μ,ν)(\mu,\nu)(μ,ν), a parameterized map TθT_\thetaTθ​ that can efficiently map μ\muμ onto ν\nuν. In many applications, such as predicting cell responses to treatments, the…
See paper details