View publication

This paper was accepted at the Tutorial Session at 47th International Conference on Very Large Data Bases.

The industrial machine learning pipeline requires iterating on model features, training and deploying models, and monitoring deployed models at scale. Feature stores were developed to manage and standardize the engineer’s workflow in this end-to-end pipeline, focusing on traditional tabular feature data. In recent years, however, model development has shifted towards using self-supervised pretrained embeddings as model features. Managing these embeddings and the downstream systems that use them introduces new challenges with respect to managing embedding training data, measuring embedding quality, and monitoring downstream models that use embeddings. These challenges are largely unaddressed in standard feature stores. Our goal in this tutorial is to introduce the feature store system and discuss the challenges and current solutions to managing these new embedding-centric pipelines.

Related readings and updates.

Learning Compressed Embeddings for On-Device Inference

In deep learning, embeddings are widely used to represent categorical entities such as words, apps, and movies. An embedding layer maps each entity to a unique vector, causing the layer’s memory requirement to be proportional to the number of entities. In the recommendation domain, a given category can have hundreds of thousands of entities, and its embedding layer can take gigabytes of memory. The scale of these networks makes them difficult to…
See paper details

Data Platform for Machine Learning

In this paper, we present a purpose-built data management system, MLdp, for all machine learning (ML) datasets. ML applications pose some unique requirements different from common conventional data processing applications, including but not limited to: data lineage and provenance tracking, rich data semantics and formats, integration with diverse ML frameworks and access patterns, trial-and-error driven data exploration and evolution, rapid…
See paper details