View publication

The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on millions, not thousands, of points. The low-rank optimal transport (LOT) approach advocated in (Scetbon et al., 2021) holds several promises in that regard, and was shown to complement more established entropic regularization approaches, being able to insert itself in more complex pipelines, such as quadratic OT. LOT restricts the search for low-cost couplings to those that have a low-nonnegative rank, yielding linear time algorithms in cases of interest. However, these promises can only be fulfilled if the LOT approach is seen as a legitimate contender to entropic regularization when compared on properties of interest, where the scorecard typically includes theoretical properties (statistical complexity and relation to other methods) or practical aspects (debiasing, hyperparameter tuning, initialization). We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.

Related readings and updates.

Neural Fisher Kernel: Low-rank Approximation and Knowledge Distillation

In this paper, we study the representation of neural networks from the view of kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel applied to neural networks. We show that NFK can be computed for both supervised and unsupervised learning models, which can serve as a unified tool for representation extraction. Furthermore, we show that practical NFKs exhibit low-rank structures. We then propose an efficient…
See paper details

Implicit Greedy Rank Learning in Autoencoders via Overparameterized Linear Networks

This paper was accepted at the workshop on Overparameterization: Pitfalls and Opportunities at the ICML 2021 conference. Deep linear networks trained with gradient descent yield low rank solutions, as is typically studied in matrix factorization. In this paper, we take a step further and analyze implicit rank regularization in autoencoders. We show greedy learning of low-rank latent codes induced by a linear sub-network at the autoencoder…
See paper details