View publication

This paper was accepted at the ICML 2021 conference as well as the Theory and Practice of Differential Privacy workshop at the ICML 2021 conference.

Locally Differentially Private (LDP) Reports are commonly used for collection of statistics and machine learning in the federated setting. In many cases the best known LDP algorithms require sending prohibitively large messages from the client device to the server (such as when constructing histograms over large domain or learning a high-dimensional model). This has led to significant efforts on reducing the communication cost of LDP algorithms.

At the same time LDP reports are known to have relatively little information about the user's data due to randomization. Several schemes are known that exploit this fact to design low-communication versions of LDP algorithm but all of them do so at the expense of a significant loss in utility. Here we demonstrate a general approach that, under standard cryptographic assumptions, compresses every efficient LDP algorithm with negligible loss in privacy and utility guarantees. The practical implication of our result is that in typical applications the message can be compressed to the size of the server's pseudo-random generator seed. More generally, we relate the properties of an LDP randomizer to the power of a pseudo-random generator that suffices for compressing the LDP randomizer. From this general approach we derive low-communication algorithms for the problems of frequency estimation and high-dimensional mean estimation. Our algorithms are simpler and more accurate than existing low-communication LDP algorithms for these well-studied problems.

Related readings and updates.

A Simple and Nearly Optimal Analysis of Privacy Amplification by Shuffling

This paper was accepted at the Theory and Practice of Differential Privacy workshop at the ICML 2021 conference. Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously and has lead to significant…
See paper details

Learning with Privacy at Scale

Understanding how people use their devices often helps in improving the user experience. However, accessing the data that provides such insights — for example, what users type on their keyboards and the websites they visit — can compromise user privacy. We develop a system architecture that enables learning at scale by leveraging local differential privacy, combined with existing privacy best practices. We design efficient and scalable local differentially private algorithms and provide rigorous analyses to demonstrate the tradeoffs among utility, privacy, server computation, and device bandwidth. Understanding the balance among these factors leads us to a successful practical deployment using local differential privacy. This deployment scales to hundreds of millions of users across a variety of use cases, such as identifying popular emojis, popular health data types, and media playback preferences in Safari. We provide additional details about our system in the full version.

See article details