View publication

We show that large language models (LLMs) can be adapted to be generalizable policies for embodied visual tasks. Our approach, called Large LAnguage model Reinforcement Learning Policy (LLaRP), adapts a pre-trained frozen LLM to take as input text instructions and visual egocentric observations and output actions directly in the environment. Using reinforcement learning, we train LLaRP to see and act solely through environmental interactions. We show that LLaRP is robust to complex paraphrasings of task instructions and can generalize to new tasks that require novel optimal behavior. In particular, on 1,000 unseen tasks it achieves 42% success rate, 1.7x the success rate of other common learned baselines or zero-shot applications of LLMs. Finally, to aid the community in studying language conditioned, massively multi-task, embodied AI problems we release a novel benchmark, Language Rearrangement, consisting of 150,000 training and 1,000 testing tasks for language-conditioned rearrangement.

Related readings and updates.

Do LLMs Internally "Know" When They Follow Instructions?

This paper was accepted at the Foundation Model Interventions (MINT) Workshop at NeurIPS 2024. Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided guidelines. However, LLMs often fail to follow even simple instructions. To improve instruction-following behavior and prevent undesirable outputs, we need a deeper understanding of how LLMs’ internal states…
See paper details

On the Benefits of Pixel-Based Hierarchical Policies for Task Generalization

Reinforcement learning practitioners often avoid hierarchical policies, especially in image-based observation spaces. Typically, the single-task performance improvement over flat-policy counterparts does not justify the additional complexity associated with implementing a hierarchy. However, by introducing multiple decision-making levels, hierarchical policies can compose lower-level policies to more effectively generalize between tasks…
See paper details