View publication

Continuous path keyboard input has higher inherent ambiguity than standard tapping, because the path trace may exhibit not only local overshoots/undershoots (as in tapping) but also, depending on the user, substantial mid-path excursions. Deploying a robust solution thus requires a large amount of high-quality training data, which is difficult to collect/annotate. In this work, we address this challenge by using GANs to augment our training corpus with user-realistic synthetic data. Experiments show that, even though GAN-generated data does not capture all the characteristics of real user data, it still provides a substantial boost in accuracy at a 5:1 GAN-to-real ratio. GANs therefore inject more robustness in the model through greatly increased word coverage and path diversity.

Related readings and updates.

RGI: Robust GAN-inversion for Mask-free Image Inpainting and Unsupervised Pixel-wise Anomaly Detection

Generative adversarial networks (GANs), trained on a large-scale image dataset, can be a good approximator of the natural image manifold. GAN-inversion, using a pre-trained generator as a deep generative prior, is a promising tool for image restoration under corruptions. However, the performance of GAN-inversion can be limited by a lack of robustness to unknown gross corruptions, i.e., the restored image might easily deviate from the ground…
See paper details

ICASSP 2020

Apple sponsored the 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) in May 2020. With a focus on signal processing and its applications, the conference took place virtually from May 4 - 8. Read Apple’s accepted papers below.

See event details