Quantizing weights and activations of deep neural networks results in significant improvement in inference efficiency at the cost of lower accuracy. A source of the accuracy gap between full precision and quantized models is the quantization error. In this work, we focus on the binary quantization, in which values are mapped to -1 and 1. We provide a unified framework to analyze different scaling strategies. Inspired by the pareto-optimality of 2-bits versus 1-bit quantization, we introduce a novel 2-bits quantization with provably least squares error. Our quantization algorithms can be implemented efficiently on the hardware using bitwise operations. We present proofs to show that our proposed methods are optimal, and also provide empirical error analysis. We conduct experiments on the ImageNet dataset and show a reduced accuracy gap when using the proposed least squares quantization algorithms.

Related readings and updates.

Apple at CVPR 2020

Apple sponsored the Conference on Computer Vision and Pattern Recognition (CVPR), which took place virtually from June 14 - 19. CVPR is the premier annual international computer vision event.

See event details

An On-device Deep Neural Network for Face Detection

Apple started using deep learning for face detection in iOS 10. With the release of the Vision framework, developers can now use this technology and many other computer vision algorithms in their apps. We faced significant challenges in developing the framework so that we could preserve user privacy and run efficiently on-device. This article discusses these challenges and describes the face detection algorithm.

See article details