View publication

Large language models (LLMs) have demonstrated impressive performance on several tasks and are increasingly deployed in real-world applications. However, especially in high-stakes settings, it becomes vital to know when the output of an LLM may be unreliable. Depending on whether an answer is trustworthy, a system can then choose to route the question to another expert, or otherwise fall back on a safe default behavior. In this work, we study the extent to which LLMs can reliably indicate confidence in their answers, and how this notion of confidence can translate into downstream accuracy gains. We propose Self-Reflection with Error-based Feedback (Self-REF), a lightweight training strategy to teach LLMs to express confidence in whether their answers are correct in a reliable manner. Self-REF introduces confidence tokens into the LLM, from which a confidence score can be extracted. Compared to conventional approaches such as verbalizing confidence and examining token probabilities, we demonstrate empirically that confidence tokens show significant improvements in downstream routing and rejection learning tasks.

Related readings and updates.

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP) Workshop at NeurIPS 2024. Large Language Models (LLMs) typically generate outputs token by token using a fixed compute budget, leading to inefficient resource utilization. To address this shortcoming, recent advancements in mixture of expert (MoE) models, speculative decoding, and early exit strategies leverage the insight that computational demands can vary…
Read more
We present a new method for computing ASR word confidences that effectively mitigates the effect of ASR errors for diverse downstream applications, improves the word error rate of the 1-best result, and allows better comparison of scores across different models. We propose 1) a new method for modeling word confidence using a Heterogeneous Word Confusion Network (HWCN) that addresses some key flaws in conventional Word Confusion Networks, and 2) a…
Read more