View publication

Data augmentation methods usually apply the same augmentation (or a mix of them) to all the training samples. For example, to perturb data with noise, the noise is sampled from a Normal distribution with a fixed standard deviation, for all samples. We hypothesize that a hard sample with high training loss already provides strong training signal to update the model parameters and should be perturbed with mild or no augmentation. Perturbing a hard sample with a strong augmentation may also make it too hard to learn from. Furthermore, a sample with low training loss should be perturbed by a stronger augmentation to provide more robustness to a variety of conditions. To formalize these intuitions, we propose a novel method to learn a Sample-Adaptive Policy for Augmentation -- SapAugment. Our policy adapts the augmentation parameters based on the training loss of the data samples. In the example of Gaussian noise, a hard sample will be perturbed with a low variance noise and an easy sample with a high variance noise. Furthermore, the proposed method combines multiple augmentation methods into a methodical policy learning framework and obviates hand-crafting augmentation parameters by trial-and-error. We apply our method on an automatic speech recognition (ASR) task, and combine existing and novel augmentations using the proposed framework. We show substantial improvement, up to 21% relative reduction in word error rate on LibriSpeech dataset, over the state-of-the-art speech augmentation method.

Related readings and updates.

Apple at EMNLP 2020

Apple is sponsoring the Empirical Methods in Natural Language Processing (EMNLP) conference, which will be held virtually from November 16 to 20. EMNLP is a leading conference focused on natural language processing.

See event details

How Effective is Task-Agnostic Data Augmentation for Pre-trained Transformers?

Task-agnostic forms of data augmentation have proven widely effective in computer vision, even on pretrained models. In NLP similar results are reported most commonly for low data regimes, non-pretrained models, or situationally for pretrained models. In this paper we ask how effective these techniques really are when applied to pretrained transformers. Using two popular varieties of task-agnostic data augmentation (not tailored to any particular…
See paper details