View publication

Data augmentation methods usually apply the same augmentation (or a mix of them) to all the training samples. For example, to perturb data with noise, the noise is sampled from a Normal distribution with a fixed standard deviation, for all samples. We hypothesize that a hard sample with high training loss already provides strong training signal to update the model parameters and should be perturbed with mild or no augmentation. Perturbing a hard sample with a strong augmentation may also make it too hard to learn from. Furthermore, a sample with low training loss should be perturbed by a stronger augmentation to provide more robustness to a variety of conditions. To formalize these intuitions, we propose a novel method to learn a Sample-Adaptive Policy for Augmentation -- SapAugment. Our policy adapts the augmentation parameters based on the training loss of the data samples. In the example of Gaussian noise, a hard sample will be perturbed with a low variance noise and an easy sample with a high variance noise. Furthermore, the proposed method combines multiple augmentation methods into a methodical policy learning framework and obviates hand-crafting augmentation parameters by trial-and-error. We apply our method on an automatic speech recognition (ASR) task, and combine existing and novel augmentations using the proposed framework. We show substantial improvement, up to 21% relative reduction in word error rate on LibriSpeech dataset, over the state-of-the-art speech augmentation method.

Related readings and updates.

RangeAugment: Efficient Online Augmentation with Range Learning

State-of-the-art automatic augmentation methods (e.g., AutoAugment and RandAugment) for visual recognition tasks diversify training data using a large set of augmentation operations. The range of magnitudes of many augmentation operations (e.g., brightness and contrast) is continuous. Therefore, to make search computationally tractable, these methods use fixed and manually-defined magnitude ranges for each operation, which may lead to sub-optimal…
See paper details

Challenges of Adversarial Image Augmentations

Image augmentations applied during training are crucial for the generalization performance of image classifiers. Therefore, a large body of research has focused on finding the optimal augmentation policy for a given task. Yet, RandAugment [2], a simple random augmentation policy, has recently been shown to outperform existing sophisticated policies. Only Adversarial AutoAugment (AdvAA) [11], an approach based on the idea of adversarial training…
See paper details