View publication

This paper presents an implementation of machine learning model training using private federated learning (PFL) on edge devices. We introduce a novel framework that uses PFL to address the challenge of training a model using users' private data. The framework ensures that user data remain on individual devices, with only essential model updates transmitted to a central server for aggregation with privacy guarantees. We detail the architecture of our app selection model, which incorporates a neural network with attention mechanisms and ambiguity handling through uncertainty management. Experiments conducted through off-line simulations and on device training demonstrate the feasibility of our approach in real-world scenarios. Our results show the potential of PFL to improve the accuracy of an app selection model by adapting to changes in user behavior over time, while adhering to privacy standards. The insights gained from this study are important for industries looking to implement PFL, offering a robust strategy for training a predictive model directly on edge devices while ensuring user data privacy.

Related readings and updates.

Apple Workshop on Privacy-Preserving Machine Learning 2024

At Apple, we believe privacy is a fundamental human right. It’s also one of our core values, influencing both our research and the design of Apple’s products and services. Understanding how people use their devices often helps in improving the user experience. However, accessing the data that provides such insights — for example, what users type on their keyboards and the websites they visit — can compromise user privacy. We develop system…
See event details

Training a Tokenizer for Free with Private Federated Learning

Federated learning with differential privacy, i.e. private federated learning (PFL), makes it possible to train models on private data distributed across users’ devices without harming privacy. PFL is efficient for models, such as neural networks, that have a fixed number of parameters, and thus a fixed-dimensional gradient vector. Such models include neural-net language models, but not tokenizers, the topic of this work. Training a tokenizer…
See paper details