Private Federated Learning In Real World Application – A Case Study
AuthorsAn Ji, Bortik Bandyopadhyay, Congzheng Song, Natarajan Krishnaswami, Prabal Vashisht, Rigel Smiroldo, Isabel Litton, Sayantan Mahinder, Mona Chitnis, Andrew W Hill
AuthorsAn Ji, Bortik Bandyopadhyay, Congzheng Song, Natarajan Krishnaswami, Prabal Vashisht, Rigel Smiroldo, Isabel Litton, Sayantan Mahinder, Mona Chitnis, Andrew W Hill
This paper presents an implementation of machine learning model training using private federated learning (PFL) on edge devices. We introduce a novel framework that uses PFL to address the challenge of training a model using users' private data. The framework ensures that user data remain on individual devices, with only essential model updates transmitted to a central server for aggregation with privacy guarantees. We detail the architecture of our app selection model, which incorporates a neural network with attention mechanisms and ambiguity handling through uncertainty management. Experiments conducted through off-line simulations and on device training demonstrate the feasibility of our approach in real-world scenarios. Our results show the potential of PFL to improve the accuracy of an app selection model by adapting to changes in user behavior over time, while adhering to privacy standards. The insights gained from this study are important for industries looking to implement PFL, offering a robust strategy for training a predictive model directly on edge devices while ensuring user data privacy.