View publication

Applications such as autonomous navigation [1], human-robot interaction [2], game-playing robots [8], etc., use simulation to minimize the cost of testing in real world. Furthermore, some machine learning algorithms, like reinforcement learning, use simulation for training a model. To test reliably in simulation or deploy a model in the real world that is trained with simulated data, the simulator should be representative of the real environment. Usually, the simulator is based on manually designed rules and ignores the stochastic behavior of measurements. In particular, we would like to learn a model that captures uncertainties of the sensing algorithms (e.g. neural networks used to detect objects) in real world and add them in simulation. We model the distribution of residuals between the ground truth states of the objects and their perceived states by the sensing algorithm. This error distribution depends both on the current state of the object (e.g. distance from the sensor) and its past residuals. We assume the error distribution is conditionally Gaussian, and we use a deep neural neural network (DNN) to map the object states and past residuals to the distribution parameters (mean and variance). Our conditional model perturbs the dynamic objects’ states (position, velocities, orientations, and shape) and produces smoother trajectories which look similar to the real data.

Related readings and updates.

Safe Real-World Reinforcement Learning for Mobile Agent Obstacle Avoidance

Collision avoidance is key for mobile robots and agents to operate safely in the real world. In this work, we present an efficient and effective collision avoidance system that combines real-world reinforcement learning (RL), search-based online trajectory planning, and automatic emergency intervention, e.g. automatic emergency braking (AEB). The goal of the RL is to learn effective search heuristics that speed up the search for collision-free…
See paper details

Learning from Simulated and Unsupervised Images through Adversarial Training

With recent progress in graphics, it has become more tractable to train models on synthetic images, potentially avoiding the need for expensive annotations. However, learning from synthetic images may not achieve the desired performance due to a gap between synthetic and real image distributions. To reduce this gap, we propose Simulated+Unsupervised (S+U) learning, where the task is to learn a model to improve the realism of a simulator's output…
See paper details