View publication

*= Equal Contribution

When deploying deep learning models to a device, it is traditionally assumed that available computational resources (compute, memory, and power) remain static. However, real-world computing systems do not always provide stable resource guarantees. Computational resources need to be conserved when load from other processes is high or battery power is low. Inspired by recent works on neural network subspaces, we propose a method for training a compressible subspace of neural networks that contains a fine-grained spectrum of models that range from highly efficient to highly accurate. Our models require no retraining, thus our subspace of models can be deployed entirely on-device to allow adaptive network compression at inference time. We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity. We achieve accuracies on-par with standard models when testing our uncompressed models, and maintain high accuracy for sparsity rates above 90% when testing our compressed models. We also demonstrate that our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.

Related readings and updates.

Improving Neural Network Subspaces

In spite of the success of deep learning, we know relatively little about the many possible solutions to which a trained network can converge. Networks generally converge to some local minima—a region in space where the loss function increases in every direction—of their loss function during training. Our research explores why local minima outperforms others when a trained network is evaluated on a held-out test set.

See highlight details

Filter Distillation for Network Compression

In this paper we introduce Principal Filter Analysis (PFA), an easy to use and effective method for neural network compression. PFA exploits the correlation between filter responses within network layers to recommend a smaller network that maintain as much as possible the accuracy of the full model. We propose two algorithms: the first allows users to target compression to specific network property, such as number of trainable variable…
See paper details