View publication

State-of-the-art learning-based monocular 3D reconstruction methods learn priors over object categories on the training set, and as a result struggle to achieve reasonable generalization to object categories unseen during training. In this paper we study the inductive biases encoded in the model architecture that impact the generalization of learning-based 3D reconstruction methods. We find that 3 inductive biases impact performance: the spatial extent of the encoder, the use of the underlying geometry of the scene to describe point features, and the mechanism to aggregate information from multiple views. Additionally, we propose mechanisms to enforce those inductive biases: a point representation that is aware of camera position, and a variance cost to aggregate information across views. Our model achieves state-of-the-art results on the standard ShapeNet 3D reconstruction benchmark in various settings.

Related readings and updates.

MobileBrick: Building LEGO for 3D Reconstruction on Mobile Devices

High-quality 3D ground-truth shapes are critical for 3D object reconstruction evaluation. However, it is difficult to create a replica of an object in reality, and even 3D reconstructions generated by 3D scanners have artefacts that cause biases in evaluation. To address this issue, we introduce a novel multi-view RGBD dataset captured using a mobile device, which includes highly precise 3D ground-truth annotations for 153 object models featuring…
See paper details

High Fidelity 3D Reconstructions with Limited Physical Views

Multi-view triangulation is the gold standard for 3D reconstruction from 2D correspondences, given known calibration and sufficient views. However in practice expensive multi-view setups — involving tens sometimes hundreds of cameras — are required to obtain the high fidelity 3D reconstructions necessary for modern applications. In this work we present a novel approach that leverages recent advances in 2D-3D lifting using neural shape priors…
See paper details