View publication

We present an efficient method for compressing a trained neural network without using any data. Our data-free method requires 14x-450x fewer FLOPs than comparable state-of-the-art methods. We break the problem of data-free network compression into a number of independent layer-wise compressions. We show how to efficiently generate layer-wise training data, and how to precondition the network to maintain accuracy during layer-wise compression. We show state-of-the-art performance on MobileNetV1 for data-free low-bit-width quantization. We also show state-of-the-art performance on data-free pruning of EfficientNet B0 when combining our method with end-to-end generative methods.

Related readings and updates.

Learning Compressible Subspaces for Adaptive Network Compression at Inference Time

*= Equal Contribution When deploying deep learning models to a device, it is traditionally assumed that available computational resources (compute, memory, and power) remain static. However, real-world computing systems do not always provide stable resource guarantees. Computational resources need to be conserved when load from other processes is high or battery power is low. Inspired by recent works on neural network subspaces, we propose a…
See paper details

Filter Distillation for Network Compression

In this paper we introduce Principal Filter Analysis (PFA), an easy to use and effective method for neural network compression. PFA exploits the correlation between filter responses within network layers to recommend a smaller network that maintain as much as possible the accuracy of the full model. We propose two algorithms: the first allows users to target compression to specific network property, such as number of trainable variable…
See paper details