View publication

This paper was accepted at the How Far Are We from AGI? workshop at ICLR 2024.

Vision-Language Models (VLMs) such as GPT-4V have recently demonstrated incredible strides on diverse vision language tasks. We dig into vision-based deductive reasoning, a more sophisticated but less explored realm, and find previously unexposed blindspots in the current SOTA VLMs. Specifically, we leverage Raven’s Progressive Matrices (RPMs), to assess VLMs' abilities to perform multi-hop relational and deductive reasoning relying solely on visual clues. We perform comprehensive evaluations of several popular VLMs employing standard strategies such as in-context learning, self-consistency, and Chain-of-thoughts (CoT) on three diverse datasets, including the Mensa IQ test, IntelligenceTest, and RAVEN. The results reveal that despite the impressive capabilities of LLMs in text-based reasoning, we are still far from achieving comparable proficiency in visual deductive reasoning. We found that certain standard strategies that are effective when applied to LLMs do not seamlessly translate to the challenges presented by visual reasoning tasks. Moreover, a detailed analysis reveals that VLMs struggle to solve these tasks mainly because they are unable to perceive and comprehend multiple, confounding abstract patterns in RPM examples.

Related readings and updates.

Vision Language Models (VLMs) enable visual understanding alongside textual inputs. They are typically built by passing visual tokens from a pretrained vision encoder to a pretrained Large Language Model (LLM) through a projection layer. By leveraging the rich visual representations of the vision encoder and the world knowledge and reasoning capabilities of the LLM, VLMs can be useful for a wide range of applications, including accessibility…
Read more
Chain-of-thought (CoT) reasoning in vision language models (VLMs) is crucial for improving interpretability and trustworthiness. However, current training recipes often relying on datasets dominated by short annotations with minimal rationales. In this work, we show that training VLM on short answers leads to poor generalization on reasoning tasks that require more detailed explanations. To address this limitation, we propose a two-stage…
Read more