View publication

Recent works have shown that deep neural networks benefit from multi-task learning by learning a shared representation across several related tasks. However, performance of such systems depend on relative weighting between various losses involved during training. Prior works on loss weighting schemes assume that instances are equally easy or hard for all tasks. In order to break this assumption, we let the training process dictate the optimal weighting of tasks for every instance in the dataset. More specifically, we equip every instance in the dataset with a set of learn- able parameters (instance-level task parameters) where the cardinality is equal to the number of tasks learned by the model. These parameters model the weighting of each task for an instance. They are updated by gradient descent and do not require hand-crafted rules. We conduct extensive experiments on SURREAL and CityScapes datasets, for human shape and pose estimation, depth estimation and semantic segmentation tasks. In these tasks, our approach outperforms recent dynamic loss weighting approaches, e.g. reducing surface estimation errors by 8.97% on SURREAL. When applied to datasets where one or more tasks can have noisy annotations, the proposed method learns to prioritize learning from clean labels for a given task, e.g. reducing surface estimation errors by up to 60%. We also show that we can reliably detect corrupt labels for a given task as a by-product from learned instance-level task parameters.

Related readings and updates.

Apple at CVPR 2021

Apple is sponsoring the annual conference of Computer Vision and Pattern Recognition (CVPR). The conference focuses on computer vision and its applications and is taking place virtually from June 19 to 25.

See event details

Learning to Branch for Multi-Task Learning

Training multiple tasks jointly in one deep network yields reduced latency during inference and better performance over the single-task counterpart by sharing certain layers of a network. However, over-sharing a network could erroneously enforce over-generalization, causing negative knowledge transfer across tasks. Prior works rely on human intuition or pre-computed task relatedness scores for ad hoc branching structures. They provide suboptimal…
See paper details