View publication

Spoken language identification (LID) technologies have improved in recent years from discriminating largely distinct languages to discriminating highly similar languages or even dialects of the same language. One aspect that has been mostly neglected, however, is discrimination of languages for multilingual speakers, despite being a primary target audience of many systems that utilize LID technologies. As we show in this work, LID systems can have a high average accuracy for most combinations of languages while greatly underperforming for others when accented speech is present. We address this by using coarser-grained targets for the acoustic LID model and integrating its outputs with interaction context signals in a context-aware model to tailor the system to each user. This combined system achieves an average 97% accuracy across all language combinations while improving worst-case accuracy by over 60% relative to our baseline.

Related readings and updates.

ICASSP 2020

Apple sponsored the 45th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) in May 2020. With a focus on signal processing and its applications, the conference took place virtually from May 4 - 8. Read Apple’s accepted papers below.

See event details

Language Identification from Very Short Strings

Many language-related tasks, such as entering text on your iPhone, discovering news articles you might enjoy, or finding out answers to questions you may have, are powered by language-specific natural language processing (NLP) models. To decide which model to invoke at a particular point in time, we must perform language identification (LID), often on the basis of limited evidence, namely a short character string. Performing reliable LID is more critical than ever as multi-lingual input is becoming more and more common across all Apple platforms. In most writing scripts — like Latin and Cyrillic, but also including Hanzi, Arabic, and others — strings composed of a few characters are often present in more than one language, making reliable identification challenging. In this article, we explore how we can improve LID accuracy by treating it as a sequence labeling problem at the character level, and using bi-directional long short-term memory (bi-LSTM) neural networks trained on short character sequences. We observed reductions in error rates varying from 15% to 60%, depending on the language, while achieving reductions in model size between 40% and 80% compared to previously shipping solutions. Thus the LSTM LID approach helped us identify language more correctly in features such as QuickType keyboards and Smart Responses, thereby leading to better auto-corrections, completions, and predictions, and ultimately a more satisfying user experience. It also made public APIs like the Natural Language framework more robust to multi-lingual environments.

See highlight details