View publication

This paper develops and implements a scalable methodology for (a) estimating the noisiness of labels produced by a typical crowdsourcing semantic annotation task, and (b) reducing the resulting error of the labeling process by as much as 20-30% in comparison to other common labeling strategies. Importantly, this new approach to the labeling process, which we name Dynamic Automatic Conflict Resolution (DACR), does not require a ground truth dataset and is instead based on inter-project annotation inconsistencies. This makes DACR not only more accurate but also available to a broad range of labeling tasks. In what follows we present results from a text classification task performed at scale for a commercial personal assistant, and evaluate the inherent ambiguity uncovered by this annotation strategy as compared to other common labeling strategies.

Related readings and updates.

Leveraging User Engagement Signals For Entity Labeling in a Virtual Assistant

Personal assistant AI systems such as Siri, Cortana, and Alexa have become widely used as a means to accomplish tasks through natural language commands. However, components in these systems generally rely on supervised machine learning algorithms that require large amounts of hand-annotated training data, which is expensive and time consuming to collect. The ability to incorporate unsupervised, weakly supervised, or distantly supervised data…
See paper details

Inverse Text Normalization as a Labeling Problem

Siri displays entities like dates, times, addresses and currency amounts in a nicely formatted way. This is the result of the application of a process called inverse text normalization (ITN) to the output of a core speech recognition component. To understand the important role ITN plays, consider that, without it, Siri would display “October twenty third twenty sixteen” instead of “October 23, 2016”. In this work, we show that ITN can be formulated as a labelling problem, allowing for the application of a statistical model that is relatively simple, compact, fast to train, and fast to apply. We demonstrate that this approach represents a practical path to a data-driven ITN system.

See article details