View publication

This paper was accepted at the workshop "Machine Learning 4 Physical Sciences" at NeurIPS 2022.

Hybrid modelling reduces the misspecification of expert physical models with a machine learning (ML) component learned from data. Similarly to many ML algorithms, hybrid model performance guarantees are limited to the training distribution. To address this limitation, here we introduce a hybrid data augmentation strategy, termed expert augmentation. Based on a probabilistic formalization of hybrid modelling, we demonstrate that expert augmentation improves generalization. We validate the practical benefits of expert augmentation on a set of simulated and real-world systems described by classical mechanics.

Related readings and updates.

Finding Experts in Transformer Models

In this work we study the presence of expert units in pre-trained Transformer Models (TM), and how they impact a model's performance. We define expert units to be neurons that are able to classify a concept with a given average precision, where a concept is represented by a binary set of sentences containing the concept (or not). Leveraging the OneSec dataset (Scarlini et al., 2019), we compile a dataset of 1641 concepts that allows diverse…
See paper details

SapAugment: Learning A Sample Adaptive Policy for Data Augmentation

Data augmentation methods usually apply the same augmentation (or a mix of them) to all the training samples. For example, to perturb data with noise, the noise is sampled from a Normal distribution with a fixed standard deviation, for all samples. We hypothesize that a hard sample with high training loss already provides strong training signal to update the model parameters and should be perturbed with mild or no augmentation. Perturbing a hard…
See paper details