View publication

This paper was accepted at the workshop on Overparameterization: Pitfalls and Opportunities at the ICML 2021 conference.

Deep linear networks trained with gradient descent yield low rank solutions, as is typically studied in matrix factorization. In this paper, we take a step further and analyze implicit rank regularization in autoencoders. We show greedy learning of low-rank latent codes induced by a linear sub-network at the autoencoder bottleneck. We further propose orthogonal initialization and principled learning rate adjustment to mitigate sensitivity of training dynamics to spectral prior and linear depth. With linear autoencoders on synthetic data, our method converges stably to ground-truth latent code rank. With nonlinear autoencoders, our method converges to latent ranks optimal for downstream classification and image sampling.

Related readings and updates.

Low-Rank Optimal Transport: Approximation, Statistics and Debiasing

The matching principles behind optimal transport (OT) play an increasingly important role in machine learning, a trend which can be observed when OT is used to disambiguate datasets in applications (e.g. single-cell genomics) or used to improve more complex methods (e.g. balanced attention in transformers or self-supervised learning). To scale to more challenging problems, there is a growing consensus that OT requires solvers that can operate on…
See paper details

Neural Fisher Kernel: Low-rank Approximation and Knowledge Distillation

In this paper, we study the representation of neural networks from the view of kernels. We first define the Neural Fisher Kernel (NFK), which is the Fisher Kernel applied to neural networks. We show that NFK can be computed for both supervised and unsupervised learning models, which can serve as a unified tool for representation extraction. Furthermore, we show that practical NFKs exhibit low-rank structures. We then propose an efficient…
See paper details