View publication

This paper was accepted at the workshop on Overparameterization: Pitfalls and Opportunities at the ICML 2021 conference.

We analyze the learning dynamics of infinitely wide neural networks with a finite sized bottle-neck. Unlike the neural tangent kernel limit, a bottleneck in an otherwise infinite width network al-lows data dependent feature learning in its bottle-neck representation. We empirically show that a single bottleneck in infinite networks dramatically accelerates training when compared to purely in-finite networks, with an improved overall performance. We discuss the acceleration phenomena by drawing similarities to infinitely wide deep linear models, where the acceleration effect of a bottleneck can be understood theoretically.

Related readings and updates.

Tensor Programs IIb: Architectural Universality of Neural Tangent Kernel Training Dynamics

Yang (2020a) recently showed that the Neural Tangent Kernel (NTK) at initialization has an infinite-width limit for a large class of architectures including modern staples such as ResNet and Transformers. However, their analysis does not apply to training. Here, we show the same neural networks (in the so-called NTK parametrization) during training follow a kernel gradient descent dynamics in function space, where the kernel is the infinite-width…
See paper details

Apple at NeurIPS 2020

Apple sponsored the Neural Information Processing Systems (NeurIPS) conference, which was held virtually from December 6 to 12. NeurIPS is a global conference focused on fostering the exchange of research on neural information processing systems in their biological, technological, mathematical, and theoretical aspects.

See event details