View publication

We give a principled method for decomposing the predictive uncertainty of a model into aleatoric and epistemic components with explicit semantics relating them to the real-world data distribution. While many works in the literature have proposed such decompositions, they lack the type of formal guarantees we provide. Our method is based on the new notion of higher-order calibration, which generalizes ordinary calibration to the setting of higher-order predictors that predict mixtures over label distributions at every point. We show how to measure as well as achieve higher-order calibration using access to kk-snapshots, namely examples where each point has kk independent conditional labels. Under higher-order calibration, the estimated aleatoric uncertainty at a point is guaranteed to match the real-world aleatoric uncertainty averaged over all points where the prediction is made. To our knowledge, this is the first formal guarantee of this type that places no assumptions whatsoever on the real-world data distribution. Importantly, higher-order calibration is also applicable to existing higher-order predictors such as Bayesian and ensemble models and provides a natural evaluation metric for such models. We demonstrate through experiments that our method produces meaningful uncertainty decompositions for image classification.

Related readings and updates.

On Computationally Efficient Multi-Class Calibration

Consider a multi-class labelling problem, where the labels can take values in [k], and a predictor predicts a distribution over the labels. In this work, we study the following foundational question: Are there notions of multi-class calibration that give strong guarantees of meaningful predictions and can be achieved in time and sample complexities polynomial in k? Prior notions of calibration exhibit a tradeoff between computational efficiency…
See paper details

A Unifying Theory of Distance from Calibration

We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE)…
See paper details